CMS/20767B : Implementing a SQL Data Warehouse
5 gün (30 Saat) İleri Sınıf / Online İş Zekası ve İleri Analitik
Microsoft SQL Server ürün ailesi ile uçtan uca büyük ölçekli kurumsal iş zekası projelerinizi yürütebilirsiniz. İş zekası projelerinin belkemiğini oluşturan kaynakların keşfi, veri ambarı tasarımı, veri taşıma ve veri kalitesini arttırma konusunda teknik ve teknolojilere odaklanıyoruz. "Implementing a SQL Data Warehouse" eğitimi genel olarak SQL Server, SQL Server Integration Service, Data Quality Services, Master Data Services, ColumnStore Indexs ve tasarım prensiplerini içermektedir. Dilerseniz bu eğitimden sonra Microsoft'un 70-767 sınavına giriş yapabilir, İş Zekası Uzmanı olma yolunda büyük bir adım atabilirsiniz.
Eğitim İçeriği
Module 1: Introduction to Data Warehousing
- Lesson
- Overview of Data Warehousing
- Considerations for a Data Warehouse Solution
Module 2: Planning Data Warehouse Infrastructure
- Lesson
- Considerations for data warehouse infrastructure.
- Planning data warehouse hardware.
Module 3: Designing and Implementing a Data Warehouse
- Lesson
- Data warehouse design overview
- Designing dimension tables
- Populer Dimensional Design Principles
- Designing fact tables
- Physical Design for a Data Warehouse
Module 4: Columnstore Indexes
- Lesson
- Introduction to Columnstore Indexes (Clustered, NonClustered)
- Creating Columnstore Indexes
- Working with Columnstore Indexes
Module 5: Creating an ETL Solution
- Lesson
- Introduction to ETL with SSIS
- Exploring Source Data
- Implementing Data Flow
Module 6: Implementing Control Flow in an SSIS Package
- Lesson
- Introduction to Control Flow
- Creating Dynamic Packages (variables and parameters)
- Using Containers
- Managing consistency (Transactions and Checkpoints)
Module 7: Debugging and Troubleshooting SSIS Packages
- Lesson
- Debugging an SSIS Package
- Logging SSIS Package Events
- Handling Errors in an SSIS Package
Module 8: Implementing a Data Extraction Solution
- Lesson
- Introduction to Incremental ETL
- Extracting Modified Data
- Loading modified data
- Temporal Tables
- Lab : Extracting Modified Data
- Using a datetime column to incrementally extract data
- Using change data capture
- Using the CDC control task
- Using change tracking
- Lab : Loading a data warehouse
- Loading data from CDC output tables
- Using a lookup transformation to insert or update dimension data
- Implementing a slowly changing dimension
- Using the merge statement
Module 9: Enforcing Data Quality
- Lesson
- Introduction to Data Quality
- Using Data Quality Services to Cleanse Data
- Using Data Quality Services to Match Data
- Lab : Cleansing Data
- Creating a DQS knowledge base
- Using a DQS project to cleanse data
- Using DQS in an SSIS package
- Lab : De-duplicating Data
- Creating a matching policy
- Using a DS project to match data
Module 10: Extending SQL Server Integration Services (SSIS)
- Lesson
- Using scripting in SSIS
- Using custom components in SSIS
Module 11: Deploying and Configuring SSIS Packages
- Lesson
- Overview of SSIS Deployment
- Deploying SSIS Projects
- Planning SSIS Package Execution
- Lab : Deploying and Configuring SSIS Packages
- Creating an SSIS catalog
- Deploying an SSIS project
- Creating environments for an SSIS solution
- Running an SSIS package in SQL server management studio
- Scheduling SSIS packages with SQL server agent
Module 12: Consuming Data in a Data Warehouse
- Lesson
- Introduction to Business Intelligence
- An Introduction to Data Analysis
- Introduction to reporting
- Analyzing Data with Azure SQL Data Warehouse
- Lab : Using a data warehouse
- Exploring a reporting services report
- Exploring a PowerPivot workbook
- Exploring a Power BI report
Öncesinde Önerilenler
-
Data Engineer
Büyük Verinin İşlenmesi, Yönetimi, Veri Kalitesini Arttırma, Bulut Bilişim ve Veri Bilimi için Kodlama, Spark ve Hadoop gibi Dağıtık Mimariler ile Çalışma.
- C/STATI : Betimleyici ve Çıkarımsal İstatistik Temelleri
- C/STATF : İstatistik Esasları
- C/STATF+ : İstatistik Esasları (Genişletilmiş)
- MS/20761C : Querying Data with Transact-SQL
- C/TVTS : T-SQL ile Veri Tabanı Sorgulama (Microsoft SQL Server)
- MS/20777A : Implementing Microsoft Azure Cosmos DB Solutions
- C/PBSSBI : Power BI ile Self Service BI
- C/IRFDS : R Dili ve R ile Veri Analizi
- C/PDE : Python Dili Esasları
- C/IPFDS : Python Dili ve Python ile Veri Analizi
- C/PVA : Python ile Veri Analizi
- MS/20762C : Developing SQL Databases (Microsoft SQL Server)
- CMS/20764C : Administering a SQL Database Infrastructure
- MS/DP-300 : Administering Relational Databases on Microsoft Azure
- MS/20765C : Provisioning SQL Databases
- MS/10987C : Performance Tuning and Optimizing SQL Databases
-
BI Professional
Veri kaynaklarının Keşfi, Veri Kalitesini Arttırma, ETL, Veriambarı Tasarım Prensipleri, Veri Modelleme ve Raporlama
- C/ERIT : Etkileyici Raporlama ile Karar Verme Gücünü Arttırın
- C/STATI : Betimleyici ve Çıkarımsal İstatistik Temelleri
- C/STATF : İstatistik Esasları
- C/STATF+ : İstatistik Esasları (Genişletilmiş)
- MS/20761C : Querying Data with Transact-SQL
- C/TVTS : T-SQL ile Veri Tabanı Sorgulama (Microsoft SQL Server)
- MS/20762C : Developing SQL Databases (Microsoft SQL Server)
- C/QSDEV : Qlik Sense Geliştirici
- C/PBI : Power BI ile Veri Analizi
- MS/DA-100 : Analyzing Data with Power BI
- C/PBSSBI : Power BI ile Self Service BI
Sonrasında Önerilenler
-
Data Engineer
Büyük Verinin İşlenmesi, Yönetimi, Veri Kalitesini Arttırma, Bulut Bilişim ve Veri Bilimi için Kodlama, Spark ve Hadoop gibi Dağıtık Mimariler ile Çalışma.
- MS/20768C : Developing SQL Data Models
- MS/10990C : Analyzing Data with SQL Server Reporting Services
- C/DMDQ : Veri Yönetimi ve Veri Kalitesi
- C/ADMT : İleri Veri Modelleme Teknikleri
- CMS/DP-203 : Data Engineering on Microsoft Azure
- C/AZSC-Synapse : Fundamentals of Azure Synapse Analytics
- C/BDA-Synapse : Data Analytics Solutions Using Azure Synapse Analytics
- MS/DP-500 : Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI
- CMS/DP-601T00A : Implementing a Lakehouse with Microsoft Fabric
- C/DAWS : Big Data Analysis with Spark
- C/PSS : PySpark ile Spark SQL
- C/VBL : Veri Bilimcileri için Linux
- C/VMUP : Veri Mimarisinde Ustalaşma Programı
-
BI Professional
Veri kaynaklarının Keşfi, Veri Kalitesini Arttırma, ETL, Veriambarı Tasarım Prensipleri, Veri Modelleme ve Raporlama
- MS/20768C : Developing SQL Data Models
- MS/10990C : Analyzing Data with SQL Server Reporting Services
- C/AZSC-Synapse : Fundamentals of Azure Synapse Analytics
- C/BDA-Synapse : Data Analytics Solutions Using Azure Synapse Analytics
- MS/DP-500 : Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI
- CMS/DP-601T00A : Implementing a Lakehouse with Microsoft Fabric
- C/DMDQ : Veri Yönetimi ve Veri Kalitesi
- C/ADMT : İleri Veri Modelleme Teknikleri