MS/20777A : Implementing Microsoft Azure Cosmos DB Solutions
3 gün (18 Saat) Orta Sınıf / Online NoSQL ve Büyük Veri
Azure Cosmos DB 4 farklı türden NoSQL veritabanı ile yapabileceklerinizi tek başına yapabilir. Cosmos DB Key-Value, Document, Column-Family, Graph tiplerinde verilerle çalışmanıza olanak tanır. "Implementing Microsoft Azure Cosmos DB Solutions" eğitiminde Cosmos DB üzerinde veritabanı oluşturma, sorgulama, geliştirme ve yönetimi ile ilgili konulara odaklanıyoruz. Dilerseniz bu eğitimden sonra Microsoft'un 70-777 sınavına girebilirsiniz.
Eğitim İçeriği
Module 1: Introduction to Azure Cosmos DB
- Lesson
- Review of NoSQL database structures
- Migrating data and applications to Cosmos DB
- Managing data in Cosmos DB
- Lab : Creating and using a SQL API database in Cosmos DB
- Creating and configuring a Cosmos DB database
- Migrating data from a Mongo DB database to Cosmos DB
- Using the SQL API to access data
- Protecting data in a Cosmos DB database
Module 2: Designing and Implementing SQL API Database Applications
- Lesson
- Document models in Cosmos DB
- Querying data in a SQL API database
- Querying and maintaining data programmatically
- Lab : Designing and implementing SQL API database applications
- Design the document structure & partitioning strategy for the product catalog for the retail system
- Importing product catalog data
- Querying product catalog information
- Maintaining stock levels in the product catalog
Module 3: Implementing Server Side Operations
- Lesson
- Server-side programming with Cosmos DB
- Creating and using stored procedures
- Using triggers to maintain data integrity
- Lab : Writing user-defined functions, stored procedures and triggers
- Design and implement the document and collection structure
- Implement the shopping cart functionality in the online retail system.
- Extend the online retail system to create orders from the items in a shopping cart.
- Extend the online retail system further to enable customers to view orders and backorders.
Module 4: Optimizing and monitoring performance
- Lesson
- Optimizing database performance
- Monitoring the performance of a database
- Lab : Tuning a database and monitoring performance
- Gathering execution statistics
- Examining how the different consistency models can impact throughput and latency
- Investigate the effects of triggers on performance
- Monitoring performance and tuning the partition key
Module 5: Designing and Implementing a Graph Database
- Lesson
- Graph database models in Cosmos DB
- Designing Graph database models for efficient operation
- Lab : Designing and implementing a Graph database
- Implementing a recommendations engine for customers
- Recording product purchase information
- Query a Graph database to obtain analytics
Module 6: Querying and Analyzing Big Data with Cosmos DB
- Lesson
- Integrating Cosmos DB with Azure search to optimize queries
- Analyzing data in a Cosmos DB database using Apache Spark
- Visualizing data in a Cosmos DB database
- Lab : Querying and Analyzing Big Data with Cosmos DB
- Extending product search capabilities
- Performing end-of-month processing
- Visualizing sales data
- Exploring sales data
Module 7: Implementing Stream Processing with Cosmos DB
- Lesson
- Working with the Cosmos DB change feed
- Integrating Cosmos DB into streaming solutions
- Lab : Using Cosmos DB with stream processing
- Handling orders
- Maintaining stock analytic data
- Displaying rolling revenue for a given time period
Öncesinde Önerilenler
-
Data Engineer
Büyük Verinin İşlenmesi, Yönetimi, Veri Kalitesini Arttırma, Bulut Bilişim ve Veri Bilimi için Kodlama, Spark ve Hadoop gibi Dağıtık Mimariler ile Çalışma.
-
DB Developer
Veritabanı Sorgulama, Tasarım Prensipleri ve Geliştirme
Sonrasında Önerilenler
-
Data Engineer
Büyük Verinin İşlenmesi, Yönetimi, Veri Kalitesini Arttırma, Bulut Bilişim ve Veri Bilimi için Kodlama, Spark ve Hadoop gibi Dağıtık Mimariler ile Çalışma.
- C/PBSSBI : Power BI ile Self Service BI
- C/IRFDS : R Dili ve R ile Veri Analizi
- C/PDE : Python Dili Esasları
- C/IPFDS : Python Dili ve Python ile Veri Analizi
- C/PVA : Python ile Veri Analizi
- MS/20762C : Developing SQL Databases (Microsoft SQL Server)
- CMS/20764C : Administering a SQL Database Infrastructure
- MS/DP-300 : Administering Relational Databases on Microsoft Azure
- MS/20765C : Provisioning SQL Databases
- MS/10987C : Performance Tuning and Optimizing SQL Databases
- CMS/20767B : Implementing a SQL Data Warehouse
- MS/20768C : Developing SQL Data Models
- MS/10990C : Analyzing Data with SQL Server Reporting Services
- C/DMDQ : Veri Yönetimi ve Veri Kalitesi
- C/ADMT : İleri Veri Modelleme Teknikleri
- CMS/DP-203 : Data Engineering on Microsoft Azure
- C/AZSC-Synapse : Fundamentals of Azure Synapse Analytics
- C/BDA-Synapse : Data Analytics Solutions Using Azure Synapse Analytics
- MS/DP-500 : Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI
- CMS/DP-601T00A : Implementing a Lakehouse with Microsoft Fabric
- C/DAWS : Big Data Analysis with Spark
- C/PSS : PySpark ile Spark SQL
- C/VBL : Veri Bilimcileri için Linux
- C/VMUP : Veri Mimarisinde Ustalaşma Programı
-
DB Developer
Veritabanı Sorgulama, Tasarım Prensipleri ve Geliştirme